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AMS 132: Discussion Section 2

(All computer operations in this course will be described for the Windows operating system (OS); if
you use a different OS, you’ll need to figure out (with the help of the TA) how to do the same things
in your OS environment. All mouse clicks in this course are left-clicks unless otherwise indicated.)

This discussion section involves you working in real time with R, so if you haven’t already done so:

• On your laptop, point your favorite browser at https://cran.r-project.org/ .

• R is available for 3 OSs): Linux, Mac OS X, and Windows. If you’re running some other OS
on your laptop, you’ll either need to run R inside an emulator of one of those 3 OSs or work
with another AMS 132 student in your discussion section whose laptop is R-compatible.

Assuming that you can proceed on your machine, click on Download R for , where
is your OS. As noted above, I’ll describe the next steps for Windows; for Linux or

Mac OS X, get your Discussion Section TA or somebody else in your discussion section who’s
computer-savvy to help you.

When you get to the R for Windows page, click on Install R for the first time. As of
this writing, this will take you to the R-3.3.2 for Windows (32/64 bit) page, at which you
can click on Download R 3.3.2 for Windows. In the lower left-corner of your browser a new
icon will appear that says R-3.2.2-win.exe; wait for the download to complete into this icon,
and then left-click once on it. You’ll be asked if you want to let the R program install itself on
your machine; say Yes. You’ll now be led through a long series of small pop-up windows; you
should reply OK and/or Next whenever it’s waiting for you to choose something. Eventually
you’ll get to a window called Installing; R will now install, and the installation process
will be completed when you get to the window that says Completing the R for Windows

3.3.2 Setup Wizard, at which point you click on Finish and R should now be successfully
installed on your machine. On your desktop you should now see two new icons called Ri386

3.3.2 and Rx64 3.3.2; you should use the first of these icons if your laptop only supports
32-bit computing and the second if you’re 64-bit compatible. If you don’t know which applies
to your laptop, double-left-click on the Rx64 icon; if you’re not 64-bit compatible, an error
message will occur, but the other icon should work for you.

Once you’ve started an R session, you’ll typically want to resize the window to take up less
than 100% of your screen. In the R Console window, type demo( graphics ) and hit Enter
repeatedly, stopping before each new Enter to look at the demo results — this will show you
some of the graphical descriptive capabilities in R. When the demo is finished, you’ll get a
nearly blank line that begins with >; this is the command prompt in R, and you can now begin
doing some actual computations.

Every R session ends with the q( ) command, at which point R will ask you whether you
want to save the R workspace you’ve created; if you have code that will completely and
quickly recreate the entire session (as in this discussion section), you typically don’t need to
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save the workspace. In later discussion sections we’ll talk about how to save and restore R

workspaces.)

Many people feel that the graphical user interface (GUI) supplied by R is less than terrific.
After having installed R, if you want you can go to

https://www.rstudio.com/products/rstudio/download/

and download an open-source freeware package called RStudio that has a better GUI for R;
your TA can show you how to do this, and how to use RStudio.

In what follows, for simplicity, I’m going to tell you how to run R in the same way that I
do in class: with an R session filling half of the screen and a text file (using Notepad) filling
the other half, and with you copying and pasting back and forth from one window to the
other. (At least one of the TAs will tell you that this is somewhat clumsy and old-school
when compared to RStudio; he’s right.)

1. In the Kaiser Intensive Care Unit (ICU) case study from class, the statistical model was

(Yi | θ)
IID∼ Bernoulli(θ) (for i = 1, . . . , n) , (1)

with n = 112 and Y = (Y1, . . . , Yn), and we found it useful to keep track of the sample sum S =∑n
i=1 Yi and the sample mean Ȳ = 1

n

∑n
i=1 Yi; recall that — in the actual data set y = (y1, . . . , yn)

— S took on the value s = 4, leading to an observed sample mean of ȳ = 1
n

∑n
i=1 yi = 4

112

.
= 0.0357.

Since the mean E(Yi | θ) of a Bernoulli(θ) random variable is θ, we agreed in class that an intuitively
reasonable estimate of θ is the sample mean: θ̂ = Ȳ . Neyman’s confidence interval (CI) logic then
gave us the large-sample approximate 100(1− α)% CI

θ̂ ± Φ−1
(

1− α

2

)√ θ̂(1− θ̂)
n

, (2)

in which Φ is the cumulative distribution function (CDF) of the standard normal distribution; for
example, for a 95% nominal confidence level, α = 0.05 and Φ−1(0.975)

.
= 1.96, as you can verify

with the R command qnorm( 0.975 ).

I wrote some R code that suggested that interval (2) was not well-calibrated in this problem, by
which I mean that the actual percentage of time (across repeated-sampling data sets simulated
from model (1)) that the interval (2) included the true θ at nominal confidence level 95% was less
than 95%. We then worked out a possible small-sample improvement to interval (2), by noticing
that the repeated-sampling distribution of the sample mean θ̂ with a value of n as small as 112 and
a true θ near 0 was not very close to the normal curve suggested by the Central Limit Theorem
(CLT: because the Theorem only says what will happen for large n).

One way to understand why the CLT doesn’t provide a very good approximation in this case study
is to note that θ lives in (0, 1) but the normal curve lives on the entire real line R. This suggested
trying to find a transformed version of θ that lives on the whole real line, which led us to the logit

transform η̂ , log
(

θ̂′

1−θ̂′

)
, in which θ′ ,

s+ 1
2

n+1
nudges θ away from 0 and 1 (to keep from dividing

by 0 or trying to take the log of 0). Using the Delta Method we showed that η̂ was approximately
normally distributed with approximate mean and variance

E(η̂)
.
= η and V (η̂)

.
=

1

n θ̂′(1− θ̂′)
. (3)
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Using Neyman’s logic on η gives the approximate 100(1− α)% CI

η̂ ± Φ−1
(

1− α

2

)
ŜE(η̂) = η̂ ±

Φ−1
(
1− α

2

)√
n θ̂′(1− θ̂′)

, (4)

and by back-transforming the endpoints of this interval, using the inverse logit transformation

η = log

(
p

1− p

)
if and only if p =

eη

1 + eη
=

1

1 + e−η
, (5)

we finally got the (hopefully improved) small-sample approximate 100(1− α)% CI(
1

1 + e−(η−A)
,

1

1 + e−(η+A)

)
, (6)

in which A =
Φ−1(1−α

2 )√
n θ̂′(1−θ̂′)

.

I’ve written some new R code that implements the two approximate CIs (2) and (6). Go to the
course web page

https://ams132-winter17-01.courses.soe.ucsc.edu/

and click on the file called

Kaiser case study calibration R code

Your screen will fill with a text file. Right click inside your browser and you’ll get a menu; choose
Save as... . A new window will appear called Save As; on my laptop the default place to save
is the Desktop (on yours it might be Documents, or somewhere else). Pay attention to where the
system is about to save this file and click Save. Find this text file and double-left-click on it to
open it; it will look like the following:

################################################################

#

# checking the calibration of the large-sample

# and small-sample intervals in the Kaiser ICU case study

# with a large number of simulation replications,

# to get definitive calibration answers

rm( list = ls( ) ) # this removes everything in the R workspace

# so that you can start with a clean slate

N <- 8561 # population size

n <- 112 # sample size

# this is a probability calculation, so in visualizing

# what’s going on it’s helpful to create the population data set

population <- c( rep( 1, 306 ), rep( 0, 8255 ) )
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print( population.theta <- mean( population ) )

# 0.03574349

n.null <- 0

n.negative.large.sample <- 0

n.negative.small.sample <- 0

n.hit.large.sample <- 0

n.hit.small.sample <- 0

M.calibration.large.sample <- 1000000

seed <- 1

set.seed( seed )

# i ran the code twice, with seed = 1 and seed = 2;

# results are given below

alpha <- 0.05 # confidence level 100 ( 1 - alpha ) %

system.time(

for ( m in 1:M.calibration.large.sample ) {

y.star <- sample( population, n, replace = T )

# another way to do this would be to sample directly

# from the Bernoulli distribution with the rbinom function

# (R doesn’t have a built-in rbernoulli function, but

# you can use the fact that a Bernoulli random variable

# is just a binomial random variable in which only 1

# success/failure trial occurs): in place of the

#

# y.star <- sample( population, n, replace = T )

#

# command above you could just say

#

# y.star <- rbinom( n, 1, 306 / 8561 )

#

# (with this approach you don’t have to create a

# population data set at all)
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s.star <- sum( y.star )

if ( s.star == 0 ) {

n.null <- n.null + 1

}

theta.hat <- s.star / n

se.theta.hat <- sqrt( theta.hat * ( 1 - theta.hat ) / n )

large.sample.confidence.interval <-

c( theta.hat - qnorm( 1 - alpha / 2 ) * se.theta.hat,

theta.hat + qnorm( 1 - alpha / 2 ) * se.theta.hat )

if ( large.sample.confidence.interval[ 1 ] < 0 ) {

n.negative.large.sample <- n.negative.large.sample + 1

}

if ( ( large.sample.confidence.interval[ 1 ] <

population.theta ) & ( large.sample.confidence.interval[ 2 ] >

population.theta ) ) {

n.hit.large.sample <- n.hit.large.sample + 1

}

theta.hat.prime <- ( s.star + 0.5 ) / ( n + 1 )

eta.hat <- log( theta.hat.prime / ( 1 - theta.hat.prime ) )

se.eta.hat <- sqrt( 1 / ( n * theta.hat.prime *

( 1 - theta.hat.prime ) ) )

eta.interval <- c( eta.hat - qnorm( 1 - alpha / 2 ) * se.eta.hat,

eta.hat + qnorm( 1 - alpha / 2 ) * se.eta.hat )

small.sample.confidence.interval <- 1 /

( 1 + exp( - eta.interval ) )

if ( small.sample.confidence.interval[ 1 ] < 0 ) {

n.negative.small.sample <- n.negative.small.sample + 1

}
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if ( ( small.sample.confidence.interval[ 1 ] <

population.theta ) & ( small.sample.confidence.interval[ 2 ] >

population.theta ) ) {

n.hit.small.sample <- n.hit.small.sample + 1

}

}

)

# user system elapsed

# 29.36 0.00 29.38

# on my laptop 1,000,000 simulation iterations takes

# about 30 seconds of clock time

print( paste( ’seed =’, seed, ’; proportion of all-0 data sets =’,

signif( n.null / M.calibration.large.sample, digits = 4 ) ) )

# "seed = 1 ; proportion of all-0 data sets = 0.01685"

# "seed = 2 ; proportion of all-0 data sets = 0.01698"

dbinom( 0, n, population.theta )

# 0.01696559

( 1 - population.theta )^n

# 0.01696559

print( paste( ’seed =’, seed,

’; proportion of large-sample negative intervals =’,

signif( n.negative.large.sample / M.calibration.large.sample,

digits = 4 ) ) )

# "seed = 1 ; proportion of large-sample negative intervals = 0.412"

# "seed = 2 ; proportion of large-sample negative intervals = 0.4118"

print( paste( ’seed =’, seed, ’; large-sample interval hit rate =’,

signif( n.hit.large.sample / M.calibration.large.sample,

digits = 4 ) ) )

# "seed = 1 ; large-sample interval hit rate = 0.9058"

# "seed = 2 ; large-sample interval hit rate = 0.9056"
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print( paste( ’seed =’, seed,

’; proportion of small-sample negative intervals =’,

signif( n.negative.small.sample / M.calibration.large.sample,

digits = 4 ) ) )

# "seed = 1 ; proportion of small-sample negative intervals = 0"

# "seed = 2 ; proportion of small-sample negative intervals = 0"

print( paste( ’seed =’, seed, ’; small-sample interval hit rate =’,

signif( n.hit.small.sample / M.calibration.large.sample,

digits = 4 ) ) )

# "seed = 1 ; small-sample interval hit rate = 0.9521"

# "seed = 2 ; small-sample interval hit rate = 0.9518"

(a) Study this R code, and work with your TA to resolve any questions you may have about how
it works. Your goal is to completely understand how every command and function does what
it does, because later this quarter you’ll be writing your own R code and you need to know
how things work.

(b) Start an R session. Copy the entire block of R code in your text file and paste it into your R

window (after pasting, you may need to hit Enter to get all of it into R). The code will begin
running, and R will show you that it’s computing with a little wheel of death; on my laptop
with M = 1,000,000 simulation replications the code takes about 30 clock seconds to run.
You should get exactly the same results I did with seed = 1 (that’s the point of setting a
random number seed: the output of the simulation is “random,” but (to promote replicability)
when the code is run twice with the same random number seed it will yield exactly the same
output).

I ran the code twice, with seed = 1 and seed = 2, to get some idea of the Monte Carlo
accuracy with M = 1,000,000. Pick a few more values of seed of your own choosing, edit
them into the text window at the appropriate place (one by one), and rerun the code to see
what kind of Monte Carlo noise you get. Try varying the α value to get different nominal
confidence levels, to go along with the α = 0.05 value in the code; I would suggest α = 0.2,
α = 0.1 and α = 0.01. Complete a table like the following:

CI Coverage (n = 112, θ · 0.0357)
Large-Sample Small-Sample

Nominal Actual Actual
80%
90%
95% 90.6% 95.2%
99%

What conclusions do you draw about the calibration of the large-sample intervals with n = 112
and a true (population) θ value of about 0.0357? How about the small-sample intervals?
(If you have time you can also try different values of n (e.g., even smaller than 112) and
population.theta (e.g., even closer to 0).)
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