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AMS 132: Discussion Section 3

1. In Discussion Section 1 we looked at the Exponential distribution as a model for waiting times.
The Exponential turns out to be a special case of several other waiting-time distributions, one of
which is the Weibull distribution: to say that an IID random sample Y £ (Y3, ...,Y;) of random
variables follows the Weibull distribution with parameters & > 0 and 5 > 0 — written Weibull(k, /3)
— is to say that the marginal sampling distribution for each Y; is given by the following:

(i=1,...,n) 0 otherwise

(}/Z | " B) I,I\]J:) Weibuﬂ(k’ ﬁ) - p(yi | k ﬁ) _ { bk (6 yi)k—l exp |:_ (ﬁ yz>ki| if y; >0 } (1>

(here, as will be usual for the rest of the course, I'm using p(y; | k, 8) to implicitly define which
random variable’s density is being discussed: p(y; |k, 3) is shorthand for what would have been
written py; (y; | k, ) in AMS 131).

(a) Verify that the Exponential distribution with rate parameter § is a special case of the Weibull
by finding a value of k that yields Exponential(/).

(b) k is called the shape parameter of the Weibull distribution.

(i) Figure out the sense in which this is a good name for k& by writing and running some R code
to superimpose the following densities on the same plot: {Weibull(1,1), Weibull(2, 1),
Weibull(4, 1), Weibull(8,1)}. Hint 1: You can either write your own function to evaluate
the Weibull density or use the dweibull built-in R function, but if you use dweibull
you’ll need to issue the command help( dweibull ) and study what R says about its
parameterization of what is called Weibull(k, ) in equation (1) above (i.e., R uses a
different parameterization). Hint 2: Your code for doing this should look a lot like the
code in the file called weibull-plotting-r.txt on the course web page, reproduced for
convenience below in Table 1.

(i) What happens to the shape of the Weibull(k, ) distribution as k increases? Explain
briefly.

Inference about the parameters (k, 5) in the Weibull(k, §) sampling model is more difficult if & is
unknown; we’ll return to this problem later in the course, when we have stronger tools with which
to tackle it. So for the rest of the problem let’s adopt the sampling model

Y|k, B) " Weibull(k,3) (i=1,...,n), k>0 known . 2)

(c) With the observed data vector given by y = (y1,...,yn), show that the likelihood function
((B |y) arising from model (2) is

((Bly)=p"" (H yz) exp (—ﬁ'“ Zy’“> , (3)
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y.low <-

y.high <-

Table 1: R code template for problem 1 (b) (i).

you fill this in and adjust as needed

to create a plot in which the horizontal
and vertical limits frame the curves

to be plotted without cutting them off
and without a lot of extraneous space

in which the curve isn’t interesting;

i suggest starting with y.low = 0

H O H H H O H

+*

you fill this in and adjust as needed;
i suggest starting with y.high = 4

+=*

y.grid <- seq( y.low, y.high, length = 500 )

max.density <- # you fill this in and adjust as needed;

# 1 suggest starting with max.density =1

plot( y.grid, dweibull( y.grid, 1, 1 ), xlab = ’y’, ylab = ’Density’,
type = ’1’, lwd = 2, ylim = c( 0, max.density ) )

lines( y.grid, dweibull( y.grid, 2, 1 ), lwd

lines( y.grid, dweibull( y.grid, 4, 1 ), 1lwd

2, 1ty = 2, col ‘red’ )

2, 1ty = 3, col ’blue’ )

# and so on

and that therefore the log likelihood function in this model (ignoring irrelevant terms that are
constant in () is

U(Bly) =nklogB — B> yi. (4)
=1

Use this to show that the maximume-likelihood estimate B MLE = B has the expression

Describe in simple terms how to compute this estimator, given the data vector y.

==

Show that the Fisher information for § in this model can be expressed as

(s nk

100) =% (6)
and therefore demonstrate that a large-sample 100(1 — a)% confidence interval for 8 based
on maximum likelihood has the simple expression

Bi@‘l(l—%>i. (7)



(e) Look again at equation (3): the term (]}, y:)" ! is constant in 3, so we can just call it ¢ > 0
and write

(B ly) =cB™ exp (—6’“ Zy'“> =c (B%)" exp (—B’“ Zyk> : (8)

There appears to be something more fundamental about 3* in this model than 3 itself, because
3 enters into equation (8) only through 8*. Further evidence for this point of view can be
found by rewriting the maximum-likelihood estimator in equation (5) as

Sk n

DY

So let’s define a new parameter # = (¥, from equation (8) the likelihood function for €
(obtainable by simple substitution) is

00|y) =chexp [— (Z yf) 0] . (10)

As a Bayesian I want to think about ¢(f | y) as an un-normalized probability density in 6, and
(as in the Kaiser ICU case study, with a Bernoulli sampling model) I’'m wondering if there’s a
conjugate prior for this likelihood, because that would make the calculations easier. It turns
out there is such a conjugate prior here: it’s called the Gamma(a, \) = T'(a, \) family, with
a > 0 and A > 0, defined for 6§ > 0:

(9)

a—1 _ :
cO0*exp(—=A0) if6>0 } (11)

0~T(a,N) iff p(0) = { 0 otherwise

Verify, by direct inspection, that the product of the likelihood density in equation (10) and the
prior density in equation (11) is another member of the I'(«, A) family; in so doing you’ve just
proven that the I'(c, \) distribution is conjugate to a version of the Weibull(k, /5) likelihood
in which the unknown parameter is defined to be § = 3. Write out the conjugate updating
rule for # in this model in the form

If your prior distribution for § = 3% is I'(a, \) and your sampling distribution for
Y = (Y4,...,Y,) is Weibull(k, ) for known k > 0, then your posterior distribution
for 6 given y = (y1,...,y,) is Gamma with parameters 1 and 2 (your job
is to fill in 1 and 2).

Briefly give details on how you could work out the posterior distribution for § from the
posterior distribution for 6.



