In Discussion Section 1 we looked at the Exponential distribution as a model for waiting times. The Exponential turns out to be a special case of several other waiting-time distributions, one of which is the Weibull distribution: to say that an IID random sample \(Y \equiv (Y_1, \ldots, Y_n) \) of random variables follows the Weibull distribution with parameters \(k > 0 \) and \(\beta > 0 \) — written \(\text{Weibull}(k, \beta) \) — is to say that the marginal sampling distribution for each \(Y_i \) is given by the following:

\[
(Y_i \mid k, \beta) \overset{\text{IID}}{\sim} \text{Weibull}(k, \beta) \quad \text{iff} \quad p(y_i \mid k, \beta) = \begin{cases}
\beta k (\beta y_i)^{k-1} \exp[-(\beta y_i)^k] & \text{if } y_i > 0 \\
0 & \text{otherwise}
\end{cases}
\]

(here, as will be usual for the rest of the course, I’m using \(p(y_i \mid k, \beta) \) to implicitly define which random variable’s density is being discussed: \(p(y_i \mid k, \beta) \) is shorthand for what would have been written \(p_{Y_i}(y_i \mid k, \beta) \) in AMS 131).

(a) Verify that the Exponential distribution with rate parameter \(\beta \) is a special case of the Weibull by finding a value of \(k \) that yields \(\text{Exponential}(\beta) \).

(b) \(k \) is called the \textit{shape} parameter of the Weibull distribution.

(i) Figure out the sense in which this is a good name for \(k \) by writing and running some \texttt{R} code to superimpose the following densities on the same plot: \{\text{Weibull}(1,1), \text{Weibull}(2,1), \text{Weibull}(4,1), \text{Weibull}(8,1)\}. \textit{Hint 1}: You can either write your own function to evaluate the Weibull density or use the \texttt{dweibull} built-in \texttt{R} function, but if you use \texttt{dweibull} you’ll need to issue the command \texttt{help(dweibull)} and study what \texttt{R} says about its parameterization of what is called \texttt{Weibull}(k, \beta) in equation (1) above (i.e., \texttt{R} uses a different parameterization). \textit{Hint 2}: Your code for doing this should look a lot like the code in the file called \texttt{weibull-plotting-r.txt} on the course web page, reproduced for convenience below in Table 1.

(ii) What happens to the shape of the Weibull\((k, \beta)\) distribution as \(k \) increases? Explain briefly.

Inference about the parameters \((k, \beta)\) in the \(\text{Weibull}(k, \beta) \) sampling model is more difficult if \(k \) is unknown; we’ll return to this problem later in the course, when we have stronger tools with which to tackle it. So for the rest of the problem let’s adopt the sampling model

\[
(Y_i \mid k, \beta) \overset{\text{IID}}{\sim} \text{Weibull}(k, \beta) \quad (i = 1, \ldots, n), \quad k > 0 \text{ known}.
\]

(c) With the observed data vector given by \(y \equiv (y_1, \ldots, y_n) \), show that the likelihood function \(\ell(\beta \mid y) \) arising from model (2) is

\[
\ell(\beta \mid y) = \beta^n k \left(\prod_{i=1}^{n} y_i \right)^{k-1} \exp\left(-\beta k \sum_{i=1}^{n} y_i^k \right),
\]

1
Table 1: R code template for problem 1 (b) (i).

\[
y.\text{low} <- \text{# you fill this in and adjust as needed}\
 \text{# to create a plot in which the horizontal}\
 \text{# and vertical limits frame the curves}\
 \text{# to be plotted without cutting them off}\
 \text{# and without a lot of extraneous space}\
 \text{# in which the curve isn’t interesting;}\
 \text{# i suggest starting with y.\text{low} = 0}\n\]

\[
y.\text{high} <- \text{# you fill this in and adjust as needed;}\
 \text{# i suggest starting with y.\text{high} = 4}\n\]

\[
y.\text{grid} <- \text{seq(y.\text{low}, y.\text{high}, length = 500)}\n\]

\[
\text{max.density} <- \text{# you fill this in and adjust as needed;}\
 \text{# i suggest starting with max.density = 1}\n\]

\[
\text{plot(y.\text{grid}, dweibull(y.\text{grid}, 1, 1), xlab = ’y’, ylab = ’Density’,}\
 \text{type = ’l’, lwd = 2, ylim = c(0, max.density))}\n\]

\[
\text{lines(y.\text{grid}, dweibull(y.\text{grid}, 2, 1), lwd = 2, lty = 2, col = ’red’)}\n\]

\[
\text{lines(y.\text{grid}, dweibull(y.\text{grid}, 4, 1), lwd = 2, lty = 3, col = ’blue’)}\n\]

\[
\text{# and so on}\n\]

and that therefore the log likelihood function in this model (ignoring irrelevant terms that are constant in } \beta \text{) is}

\[
\ell(\beta \mid y) = nk \log \beta - \beta^k \sum_{i=1}^{n} y_i^k. \quad (4)
\]

Use this to show that the maximum-likelihood estimate } \hat{\beta}_{\text{MLE}} \triangleq \hat{\beta} \text{ has the expression}

\[
\hat{\beta} = \left(\frac{n}{\sum_{i=1}^{n} y_i^k} \right)^{\frac{1}{k}}. \quad (5)
\]

Describe in simple terms how to compute this estimator, given the data vector } y. \text{(d) Show that the Fisher information for } \beta \text{ in this model can be expressed as}

\[
\hat{I}(\beta) = \frac{nk}{\beta^2}, \quad (6)
\]

and therefore demonstrate that a large-sample 100(1 - \alpha)% confidence interval for } \beta \text{ based on maximum likelihood has the simple expression}

\[
\hat{\beta} \pm \Phi^{-1}(1 - \alpha/2) \frac{\beta}{\sqrt{nk}}. \quad (7)
\]
(e) Look again at equation (3): the term \(\prod_{i=1}^{n} y_i^{k-1} \) is constant in \(\beta \), so we can just call it \(c > 0 \) and write

\[
\ell(\beta | y) = c \beta^{nk} \exp \left(-\beta^k \sum_{i=1}^{n} y_i^k \right) = c \left(\beta^k \right)^n \exp \left(-\beta^k \sum_{i=1}^{n} y_i^k \right),
\]

(8)

There appears to be something more fundamental about \(\beta^k \) in this model than \(\beta \) itself, because \(\beta \) enters into equation (8) only through \(\beta^k \). Further evidence for this point of view can be found by rewriting the maximum-likelihood estimator in equation (5) as

\[
\hat{\beta}^k = \frac{n}{\sum_{i=1}^{n} y_i^k}.
\]

(9)

So let’s define a new parameter \(\theta \triangleq \beta^k \); from equation (8) the likelihood function for \(\theta \) (obtainable by simple substitution) is

\[
\ell(\theta | y) = c \theta^{n} \exp \left[-\left(\sum_{i=1}^{n} y_i^k \right) \theta \right].
\]

(10)

As a Bayesian I want to think about \(\ell(\theta | y) \) as an un-normalized probability density in \(\theta \), and (as in the Kaiser ICU case study, with a Bernoulli sampling model) I’m wondering if there’s a conjugate prior for this likelihood, because that would make the calculations easier. It turns out there is such a conjugate prior here: it’s called the Gamma(\(\alpha, \lambda \)) \(\triangleq \Gamma(\alpha, \lambda) \) family, with \(\alpha > 0 \) and \(\lambda > 0 \), defined for \(\theta > 0 \):

\[
\theta \sim \Gamma(\alpha, \lambda) \quad \text{iff} \quad p(\theta) = \begin{cases} c \theta^{\alpha-1} \exp(-\lambda \theta) & \text{if } \theta > 0 \\ 0 & \text{otherwise} \end{cases}.
\]

(11)

Verify, by direct inspection, that the product of the likelihood density in equation (10) and the prior density in equation (11) is another member of the \(\Gamma(\alpha, \lambda) \) family; in so doing you’ve just proven that the \(\Gamma(\alpha, \lambda) \) distribution is conjugate to a version of the Weibull(\(k, \beta \)) likelihood in which the unknown parameter is defined to be \(\theta = \beta^k \). Write out the conjugate updating rule for \(\theta \) in this model in the form

\[
\text{If your prior distribution for } \theta = \beta^k \text{ is } \Gamma(\alpha, \lambda) \text{ and your sampling distribution for } Y = (Y_1, \ldots, Y_n) \text{ is Weibull}(k, \beta) \text{ for known } k > 0, \text{ then your posterior distribution for } \theta \text{ given } y = (y_1, \ldots, y_n) \text{ is Gamma with parameters } _1 \text{ and } _2 \text{ (your job is to fill in } _1 \text{ and } _2). \]

Briefly give details on how you could work out the posterior distribution for \(\beta \) from the posterior distribution for \(\theta \).