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1. In Discussion Section 1 we looked at the Exponential distribution as a model for waiting times.
The Exponential turns out to be a special case of several other waiting-time distributions, one of
which is the Weibull distribution: to say that an IID random sample Y , (Y1, . . . , Yn) of random
variables follows the Weibull distribution with parameters k > 0 and β > 0 — written Weibull(k, β)
— is to say that the marginal sampling distribution for each Yi is given by the following:

(Yi | k, β)
IID∼ Weibull(k, β)

(i = 1, . . . , n)
iff p(yi | k, β) =

{
β k (β yi)

k−1 exp
[
− (β yi)

k
]

if yi > 0

0 otherwise

}
(1)

(here, as will be usual for the rest of the course, I’m using p(yi | k, β) to implicitly define which
random variable’s density is being discussed: p(yi | k, β) is shorthand for what would have been
written pYi(yi | k, β) in AMS 131).

(a) Verify that the Exponential distribution with rate parameter β is a special case of the Weibull
by finding a value of k that yields Exponential(β).

(b) k is called the shape parameter of the Weibull distribution.

(i) Figure out the sense in which this is a good name for k by writing and running some R code
to superimpose the following densities on the same plot: {Weibull(1, 1), Weibull(2, 1),
Weibull(4, 1), Weibull(8, 1)}. Hint 1: You can either write your own function to evaluate
the Weibull density or use the dweibull built-in R function, but if you use dweibull

you’ll need to issue the command help( dweibull ) and study what R says about its
parameterization of what is called Weibull(k, β) in equation (1) above (i.e., R uses a
different parameterization). Hint 2: Your code for doing this should look a lot like the
code in the file called weibull-plotting-r.txt on the course web page, reproduced for
convenience below in Table 1.

(ii) What happens to the shape of the Weibull(k, β) distribution as k increases? Explain
briefly.

Inference about the parameters (k, β) in the Weibull(k, β) sampling model is more difficult if k is
unknown; we’ll return to this problem later in the course, when we have stronger tools with which
to tackle it. So for the rest of the problem let’s adopt the sampling model

(Yi | k, β)
IID∼ Weibull(k, β) (i = 1, . . . , n), k > 0 known . (2)

(c) With the observed data vector given by y , (y1, . . . , yn), show that the likelihood function
`(β |y) arising from model (2) is

`(β |y) = β nk

(
n∏
i=1

yi

)k−1

exp

(
−βk

n∑
i=1

yki

)
, (3)
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Table 1: R code template for problem 1 (b) (i).

y.low <- # you fill this in and adjust as needed

# to create a plot in which the horizontal

# and vertical limits frame the curves

# to be plotted without cutting them off

# and without a lot of extraneous space

# in which the curve isn’t interesting;

# i suggest starting with y.low = 0

y.high <- # you fill this in and adjust as needed;

# i suggest starting with y.high = 4

y.grid <- seq( y.low, y.high, length = 500 )

max.density <- # you fill this in and adjust as needed;

# i suggest starting with max.density = 1

plot( y.grid, dweibull( y.grid, 1, 1 ), xlab = ’y’, ylab = ’Density’,

type = ’l’, lwd = 2, ylim = c( 0, max.density ) )

lines( y.grid, dweibull( y.grid, 2, 1 ), lwd = 2, lty = 2, col = ’red’ )

lines( y.grid, dweibull( y.grid, 4, 1 ), lwd = 2, lty = 3, col = ’blue’ )

# and so on

and that therefore the log likelihood function in this model (ignoring irrelevant terms that are
constant in β) is

``(β |y) = n k log β − βk
n∑
i=1

yki . (4)

Use this to show that the maximum-likelihood estimate β̂MLE , β̂ has the expression

β̂ =

(
n∑n
i=1 y

k
i

) 1
k

. (5)

Describe in simple terms how to compute this estimator, given the data vector y.

(d) Show that the Fisher information for β in this model can be expressed as

Î
(
β̂
)

=
n k

β̂2
, (6)

and therefore demonstrate that a large-sample 100(1 − α)% confidence interval for β based
on maximum likelihood has the simple expression

β̂ ± Φ−1
(

1− α

2

) β̂√
n k

. (7)
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(e) Look again at equation (3): the term (
∏n

i=1 yi)
k−1

is constant in β, so we can just call it c > 0
and write

`(β |y) = c β nk exp

(
−βk

n∑
i=1

yki

)
= c

(
βk
)n

exp

(
−βk

n∑
i=1

yki

)
, (8)

There appears to be something more fundamental about βk in this model than β itself, because
β enters into equation (8) only through βk. Further evidence for this point of view can be
found by rewriting the maximum-likelihood estimator in equation (5) as

β̂k =
n∑n
i=1 y

k
i

. (9)

So let’s define a new parameter θ , βk; from equation (8) the likelihood function for θ
(obtainable by simple substitution) is

`(θ |y) = c θn exp

[
−

(
n∑
i=1

yki

)
θ

]
. (10)

As a Bayesian I want to think about `(θ |y) as an un-normalized probability density in θ, and
(as in the Kaiser ICU case study, with a Bernoulli sampling model) I’m wondering if there’s a
conjugate prior for this likelihood, because that would make the calculations easier. It turns
out there is such a conjugate prior here: it’s called the Gamma(α, λ) , Γ(α, λ) family, with
α > 0 and λ > 0, defined for θ > 0:

θ ∼ Γ(α, λ) iff p(θ) =

{
c θα−1 exp(−λ θ) if θ > 0

0 otherwise

}
. (11)

Verify, by direct inspection, that the product of the likelihood density in equation (10) and the
prior density in equation (11) is another member of the Γ(α, λ) family; in so doing you’ve just
proven that the Γ(α, λ) distribution is conjugate to a version of the Weibull(k, β) likelihood
in which the unknown parameter is defined to be θ = βk. Write out the conjugate updating
rule for θ in this model in the form

If your prior distribution for θ = βk is Γ(α, λ) and your sampling distribution for
Y = (Y1, . . . , Yn) is Weibull(k, β) for known k > 0, then your posterior distribution
for θ given y = (y1, . . . , yn) is Gamma with parameters 1 and 2 (your job
is to fill in 1 and 2).

Briefly give details on how you could work out the posterior distribution for β from the
posterior distribution for θ.
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