Prof. David Draper Department of Applied Mathematics and Statistics University of California, Santa Cruz

AMS 132: Discussion Section 3

1. In Discussion Section 1 we looked at the Exponential distribution as a model for waiting times. The Exponential turns out to be a special case of several other waiting-time distributions, one of which is the *Weibull* distribution: to say that an IID random sample $\mathbf{Y} \triangleq (Y_1, \ldots, Y_n)$ of random variables follows the Weibull distribution with parameters k > 0 and $\beta > 0$ — written Weibull (k, β) — is to say that the marginal sampling distribution for each Y_i is given by the following:

$$(Y_i | k, \beta) \stackrel{\text{IID}}{\sim} \text{Weibull}(k, \beta) \quad \text{iff} \quad p(y_i | k, \beta) = \begin{cases} \beta k (\beta y_i)^{k-1} \exp\left[-(\beta y_i)^k\right] & \text{if } y_i > 0\\ 0 & \text{otherwise} \end{cases}$$
(1)

(here, as will be usual for the rest of the course, I'm using $p(y_i | k, \beta)$ to implicitly define which random variable's density is being discussed: $p(y_i | k, \beta)$ is shorthand for what would have been written $p_{Y_i}(y_i | k, \beta)$ in AMS 131).

- (a) Verify that the Exponential distribution with rate parameter β is a special case of the Weibull by finding a value of k that yields Exponential(β).
- (b) k is called the *shape* parameter of the Weibull distribution.
 - (i) Figure out the sense in which this is a good name for k by writing and running some R code to superimpose the following densities on the same plot: {Weibull(1,1), Weibull(2,1), Weibull(4,1), Weibull(8,1)}. Hint 1: You can either write your own function to evaluate the Weibull density or use the dweibull built-in R function, but if you use dweibull you'll need to issue the command help(dweibull) and study what R says about its parameterization of what is called Weibull(k, β) in equation (1) above (i.e., R uses a different parameterization). Hint 2: Your code for doing this should look a lot like the code in the file called weibull-plotting-r.txt on the course web page, reproduced for convenience below in Table 1.
 - (ii) What happens to the shape of the Weibull (k,β) distribution as k increases? Explain briefly.

Inference about the parameters (k,β) in the Weibull (k,β) sampling model is more difficult if k is unknown; we'll return to this problem later in the course, when we have stronger tools with which to tackle it. So for the rest of the problem let's adopt the sampling model

$$(Y_i | k, \beta) \stackrel{\text{IID}}{\sim} \text{Weibull}(k, \beta) \quad (i = 1, \dots, n), \quad k > 0 \text{ known} .$$
 (2)

(c) With the observed data vector given by $\boldsymbol{y} \triangleq (y_1, \ldots, y_n)$, show that the likelihood function $\ell(\beta \mid \boldsymbol{y})$ arising from model (2) is

$$\ell(\beta \mid \boldsymbol{y}) = \beta^{nk} \left(\prod_{i=1}^{n} y_i\right)^{k-1} \exp\left(-\beta^k \sum_{i=1}^{n} y_i^k\right), \qquad (3)$$

and that therefore the log likelihood function in this model (ignoring irrelevant terms that are constant in β) is

$$\ell\ell(\beta \mid \boldsymbol{y}) = n \, k \, \log \beta \, - \, \beta^k \sum_{i=1}^n y_i^k \, . \tag{4}$$

Use this to show that the maximum-likelihood estimate $\hat{\beta}_{MLE} \triangleq \hat{\beta}$ has the expression

$$\hat{\beta} = \left(\frac{n}{\sum_{i=1}^{n} y_i^k}\right)^{\frac{1}{k}} . \tag{5}$$

Describe in simple terms how to compute this estimator, given the data vector \boldsymbol{y} .

(d) Show that the Fisher information for β in this model can be expressed as

$$\hat{I}\left(\hat{\beta}\right) = \frac{n\,k}{\hat{\beta}^2}\,,\tag{6}$$

and therefore demonstrate that a large-sample $100(1 - \alpha)\%$ confidence interval for β based on maximum likelihood has the simple expression

$$\hat{\beta} \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \frac{\hat{\beta}}{\sqrt{n \, k}} \,. \tag{7}$$

(e) Look again at equation (3): the term $(\prod_{i=1}^{n} y_i)^{k-1}$ is constant in β , so we can just call it c > 0 and write

$$\ell(\beta \mid \boldsymbol{y}) = c \beta^{nk} \exp\left(-\beta^k \sum_{i=1}^n y_i^k\right) = c \left(\beta^k\right)^n \exp\left(-\beta^k \sum_{i=1}^n y_i^k\right), \quad (8)$$

There appears to be something more fundamental about β^k in this model than β itself, because β enters into equation (8) only through β^k . Further evidence for this point of view can be found by rewriting the maximum-likelihood estimator in equation (5) as

$$\hat{\beta}^k = \frac{n}{\sum_{i=1}^n y_i^k} \,. \tag{9}$$

So let's define a new parameter $\theta \triangleq \beta^k$; from equation (8) the likelihood function for θ (obtainable by simple substitution) is

$$\ell(\theta \mid \boldsymbol{y}) = c \,\theta^n \exp\left[-\left(\sum_{i=1}^n y_i^k\right)\theta\right] \,. \tag{10}$$

As a Bayesian I want to think about $\ell(\theta | \boldsymbol{y})$ as an un-normalized probability density in θ , and (as in the Kaiser ICU case study, with a Bernoulli sampling model) I'm wondering if there's a conjugate prior for this likelihood, because that would make the calculations easier. It turns out there is such a conjugate prior here: it's called the $Gamma(\alpha, \lambda) \triangleq \Gamma(\alpha, \lambda)$ family, with $\alpha > 0$ and $\lambda > 0$, defined for $\theta > 0$:

$$\theta \sim \Gamma(\alpha, \lambda) \quad \text{iff} \quad p(\theta) = \left\{ \begin{array}{cc} c \, \theta^{\alpha - 1} \, \exp(-\lambda \, \theta) & \text{if } \theta > 0 \\ 0 & \text{otherwise} \end{array} \right\} \,. \tag{11}$$

Verify, by direct inspection, that the product of the likelihood density in equation (10) and the prior density in equation (11) is another member of the $\Gamma(\alpha, \lambda)$ family; in so doing you've just proven that the $\Gamma(\alpha, \lambda)$ distribution is conjugate to a version of the Weibull (k, β) likelihood in which the unknown parameter is defined to be $\theta = \beta^k$. Write out the conjugate updating rule for θ in this model in the form

If your prior distribution for $\theta = \beta^k$ is $\Gamma(\alpha, \lambda)$ and your sampling distribution for $\mathbf{Y} = (Y_1, \ldots, Y_n)$ is Weibull (k, β) for known k > 0, then your posterior distribution for θ given $\mathbf{y} = (y_1, \ldots, y_n)$ is Gamma with parameters _____1 and _____2 (your job is to fill in _____1 and _____2).

Briefly give details on how you could work out the posterior distribution for β from the posterior distribution for θ .