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AMS 132: Discussion Section 5

Today we’ll look at a sampling distribution that was once important historically but is now not used
much, so that you can see some of the sorts of problems that arise when you try to fit unfriendly
distributions to data.

You’ve taken n IID measurements y = (y1, . . . , yn) of a quantity µ that lives somewhere on the real
line, and you choose the following for your sampling distribution:

p(yi |µσ B) =
1

2σ
exp

(
−|yi − µ|

σ

)
, (1)

in which (as mentioned above) −∞ < µ < ∞ governs the center of the distribution and σ > 0
controls the scale (or spread, or dispersion); in this problem the vector of unknown quantities is
θ = (µ, σ). The great French mathematician, statistician, physicist and astronomer Pierre Simon
de Laplace (1749–1827) first studied this distribution when trying to model measurement errors
arising from the use of telescopes to locate objects in the solar system, and the great economist
John Maynard Keynes (1883–1946) also studied its properties. Equation (1) has two standard
names: the Laplace distribution (after its founder) and the double exponential distribution (we’ll
see why this name is appropriate below). Here I’ll call (1) the Laplace(µ, σ) distribution.

(a) Use R to plot (on the same graph) the Laplace distributions for −10 ≤ yi ≤ 10 with the
following parameter values: (µ, σ) = {(0, 1), (0, 2), (0, 4), (1, 1), (1, 3)}. What aspect of the
distribution does µ capture? How about σ? Explain briefly.

(b) By breaking the distribution up into two pieces — (−∞ < yi < 0) and (0 < yi <∞) — show
that if (Yi |µσ B) ∼ Laplace(µ, σ) then E(Yi |µσ B) = µ and V (Yi |µσ B) = 2σ2. Do these
findings agree with your exploration in (a)? Explain briefly.

(c) With y = (y1, . . . , yn), show that the likelihood and log-likelihood functions in the sampling

model (Yi |µσ B)
IID∼ Laplace(µ, σ) are

`(µσ |y B) = c σ−n exp

(
− 1

σ

n∑
i=1

|yi − µ|

)
(2)

and

``(µσ |y B) = c− n log σ − 1

σ

n∑
i=1

|yi − µ| , (3)

respectively. Briefly explain what’s immediately difficult about this log likelihood function
when trying to identify µ̂MLE (especially when compared with a sampling model in which the
measurement errors are Gaussian). Show that, whatever µ̂MLE is,

σ̂MLE =
1

n

n∑
i=1

|yi − µ| . (4)
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(d) To get some idea of what’s going on with µ̂MLE, consider a cut-down version of model (1) in

which we temporarily pretend that σ is known: (Yi |µB)
IID∼ Laplace(µ, σ) for (i = 1, . . . , n)

with known σ > 0. Suppressing the irrelevant constant c, the likelihood and log-likelihood
functions for µ in this new cut-down model are then

`(µ |y B) = exp

(
− 1

σ

n∑
i=1

|yi − µ|

)
(5)

and

``(µ |y B) = − 1

σ

n∑
i=1

|yi − µ| , (6)

respectively. Now consider the following two artificial data sets: y1 = (1, 2, 9) and y2 =
(1, 2, 5, 9). It turns out that σ̂MLE is about 2.7 for the first data set and 2.8 for the second
one; to get useful pictures let’s use the rounded value of σ = 3.

(i) Plot the likelihood and log-likelihood functions with y1 and study them. Will our usual
way of finding µ̂MLE work with this data set? Will our usual Fisher information calcu-

lation be helpful in coming up with ŜE(µ̂MLE)? Explain briefly.

(ii) Repeat (i) with y2. What’s even more unusual about the likelihood and log-likelihood
functions with this data set? Explain briefly.

The MLE for µ in data set 1 turns out to be 2, and µ̂MLE in the second data set can be taken
to be any number between 2 and 5, for example the midpoint 3.5. Notice that in both of
these artificial data sets the MLE of µ is the median of the data set; this turns out to be true
in general, although it’s not particularly pleasant to prove it.

(iii) Regarding the likelihood function (when thinking in a Bayesian way) as an un-normalized
density for µ, do you recognize it as something that could serve as the basis of a conjugate
prior having a familiar mathematical form? Explain briefly.

(iv) How might you go about summarizing a posterior distribution in a setting in which
no standard-family conjugate prior exists? Discuss with your TA how you might use
random samples from the posterior to summarize it — this (Bayesian computation when
no standard closed-form expression for the posterior exists) will be our subject next week.
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