
Prof. David Draper
Department of

Applied Mathematics and Statistics
University of California, Santa Cruz

AMS 132: Discussion Section 6

The plan in this discussion section is to explore the following idea, recently mentioned in class and
highly important in contemporary Bayesian computation:

Theorem: Virtually anything you want to know about a p–dimensional probability
distribution, even if p is really big, can — as long as p is finite — be learned, to
arbitrary accuracy, just by taking large enough random samples from the distribution
and summarizing the random draws appropriately.

Examples of random simulation as a method for problem-solving go back all the way to the 1700s,
when a guy called Georges-Louis Leclerc, Comte de Buffon (French, 1707–1788) asked a question
whose answer leads to simulating the value of π by dropping a needle haphazardly on a floor with
parallel floor boards and keeping track of the frequency with which the needle touches one of the
lines between the boards. I mentioned another example in class, in which in 1908 the Guinness
brewery guy, William Gosset (“Student”) (British, 1876–1937), repeatedly simulated n random

draws from the N(µ, σ2) distribution to approximate the sampling distribution of Ȳ−µ
s/
√
n
.

The main people who first made general and pioneering use of the Theorem above were two
scientists, Nicholas Metropolis (Greek–American physicist, 1915–1999) and Stanislaw Ulam (Polish–
American mathematician, 1909–1984), who — in about 1942, while working on the Manhattan
Project to create the first atomic bomb — proposed the name Monte Carlo methods (named after
the famous European town where casinos have offered games of chance since the mid 1800s) for
random-simulation approaches to mathematical problem-solving. The work of Metropolis and Ulam
was classifed as a war secret by the U.S. government, and Metropolis and Ulam were not allowed to
publish until 1949; the idea of Monte-Carlo sampling didn’t really take off until the 1960s, when the
first digital computers made taking large numbers of random draws from a distribution possible,
and Monte-Carlo methods have become more and more popular since then. Mathematicians today
typically try to solve the problem they’re working on directly in closed form, but if they can’t find
closed-form solutions they often use the Monte Carlo approach to gain insight into what analytic
solutions might look like if you could find them.

(1) As our first example of Monte-Carlo approximation, consider the sampling model — (Yi | θB)
IID∼ Bernoulli(θ), for i = 1, . . . , n — we used in the Kaiser ICU case study, in which we saw

that a conjugate Beta(α, β) prior distribution led to a Beta(α + s, β + n − s) posterior for
θ, where s =

∑n
i=1 yi is a sufficient statistic and y = (y1, . . . , yn) is the vector of observed

binary outcomes. In the Kaiser case study, (s, n) = (4, 112) and we found that α = β = 0.5
led to a well-calibrated low-information prior consistent with the context of the problem: this
focuses attention on the Beta(4.5, 108.5) posterior distribution. We were able to summarize
this distribution with the R functions dbeta (to plot the posterior density) and qbeta (to get
the 2.5% and 97.5% quantiles of the distribution, to construct a 95% interval for θ, and we

1

used the closed-form results

If (θ | B) ∼ Beta(α, β) then E(θ | B) =
α

α + β
and SD(θ | B) =

√
αβ

(α + β)2(α + β + 1)

to compute the posterior mean and SD for θ. But what if you didn’t know those closed-form
results and you didn’t have dbeta and qbeta? According to the Monte-Carlo Theorem,
you’re supposed to be able to obtain all of the same findings just by taking random samples
from the posterior, for example with the R function rbeta — how does that work? Let’s find
out.

(a) Download the R code for Discussion Section 6 from the course web page. Run the code
block between the delimiters

--> code for part 1 (a) of discussion section 6 starts here <--

and

--> code for part 1 (a) of discussion section 6 ends here <--

Verify that you get precisely the same results I got with the random number generator
seed set to 1. As the code block suggests, now try running this same code with two new
random number seeds of your own choosing, and make a table like the one at the end of
the code block.

(b) As noted in the code, you can see that with only M = 100 simulated draws, the Monte
Carlo method is not very accurate, but we can solve that problem easily, just by increasing
M . Rerun the code block with M = 1,000,000 and make a second table with results from
the same three random number seeds. How much more accurate are the Monte Carlo
results now?

(c) We need a way to quantify the amount of uncertainty in Monte Carlo estimates as a
function of M . Fortunately, we’re statisticians: consider, for example, the Monte Carlo
estimate of the posterior mean. This is just the mean θ̄∗ of the M IID draws (θ∗1, . . . , θ

∗
M)

that you got R to make for you, and we know from the frequentist part of this course that
the estimated standard error of a sample mean under IID sampling is just the sample
SD divided by

√
M , so let’s invent a quantity called the Monte Carlo standard error

(MCSE) of the sample mean:

M̂CSE
(
θ̄∗
)

=
sθ∗√
M

, (1)

in which sθ∗ is the sample SD of the M IID draws (θ∗1, . . . , θ
∗
M). Run the code block

between the delimiters

--> code for part 1 (c) of discussion section 6 starts here <--

and

--> code for part 1 (c) of discussion section 6 ends here <--

Verify that you get precisely the same results I got with the random number generator
seed set to 1, and try rerunning the code block with a random number seed of your
choice. You can see that the MCSE of θ̄∗ is dramatically smaller with M = 1 million

than with M = 100, and we can readily compute how much smaller:
√

1000000
100

= 100

2

times smaller. Notice that, right in the middle of a Bayesian calculation, we can use
frequentist ideas on the Monte Carlo data set (θ∗1, . . . , θ

∗
M) to construct a 95% Monte

Carlo confidence interval for the posterior mean, namely

θ̄∗ ± 2 M̂CSE
(
θ̄∗
)

= θ̄∗ ± 2
sθ∗√
M

. (2)

(d) Now suppose you want to plan a Monte Carlo experiment: how big should M be to get
the accuracy level you need (not less, and not more, than that level)? One simple idea
would be to set the MCSE equal to a target value T and solve for M :

If M̂CSE
(
θ̄∗
)

=
sθ∗√
M

= T then M =
s2
θ∗

T 2
. (3)

Easy enough, but there’s a slight problem: before running the experiment you don’t
know how sθ∗ will come out. Here’s a simple fix:

In step (1) of your design, run a small pilot experiment with (say) M = M0 =
1,000 and observe the value of sθ∗ ; plug this into equation (3) and solve for M .
If the resulting M is less than M0, you’re done; otherwise in step (2) of your
design, make (M −M0) additional Monte Carlo draws, append them to your
provisional Monte Carlo data set of size M0 in step (1), and summarize your
findings.

Suppose that in the Kaiser case study we had wanted a Monte Carlo standard error of
T = 0.00001 for the Monte Carlo estimate of the posterior mean (this is unrealistically
small, but we’re just practicing here). Run a pilot study with M0 = 1,000, as described
in the paragraph above, and show that the full Monte Carlo run would have needed
about M

.
= 3 million draws to achieve this level of Monte-Carlo accuracy.

(e) The Monte Carlo method is far more flexible than just approximating posterior means,
SDs and densities. For example, in the Kaiser case study above, suppose that in addition
to θ we’re also interested in η = log

(
θ

1−θ

)
and in estimating the posterior probability that

θ (the population rate of unplanned transfers to the ICU for heart attack patients) was no
more than (say) 7%. Keeping track of a quantity in your Monte Carlo data set is called
monitoring that quantity: in addition to θ we want to monitor η and P (θ ≤ 0.07 |y B).
Nothing could be simpler for η: just create a new variable in R called eta.star whose
values are given by

eta.star <- log(theta.star / (1 - theta.star))

and summarize eta.star. Do this with your choice of random number seed and M =
1 million: use Monte Carlo to approximate the posterior mean and SD of η (you should
get values around −3.3 and 0.51, respectively) and make a histogram summarizing the
posterior density of η (you should find that it looks roughly Gaussian but with a bit of
a left tail).

As for P (θ ≤ 0.07 |y B), slightly more cleverness is needed: let’s use the fact, from AMS
131, that

If Y is a random variable and A is a true/false proposition about Y (e.g., Y > 5),
then you can create an indicator variable I(A) = 1 if A is true and 0 if A is false
and calculate P (A) by computing the expected value of I(A).

Thus, to use Monte Carlo to estimate P (θ ≤ 0.07 |y B), just create in R a variable that’s
1 whenever θ∗ ≤ 0.07 and 0 otherwise and calculate the mean of that variable (you
should get a value of around 0.93 for this posterior probability).

3

