This MCMC
next: bootstrap

Q: \[p(\mu, \sigma^2 | \mathbf{y}) \]?

A: no conjugate prior exists when \(\tau \) is unknown.

want \[p(\mu, \sigma^2 | \mathbf{y}) \] and marginal post. for \(\mu \)

also want \[p(\mu | \mathbf{y}) = \int p(\mu, \sigma^2 | \mathbf{y}) \, \text{d} \sigma^2 \]

\[p(\mu, \sigma^2, \tau | \mathbf{y}) \] & \[p(\tau | \mathbf{y}) \] each of these requires a \((p-1)\)-dimensional integration.

\begin{array}{cccc}
\text{iteration} & \hat{\mu} & \hat{\sigma}^2 & \hat{\tau} & \text{post.} \\
\text{starting values} & 0 & 1 & 1 & \text{values} \\
\text{initialize} & \mu & \sigma^2 & \tau & \text{table}
\end{array}
Iteration # i:

time series plot

1st order Markov chain: to know where to go next, I only need to know where I am now.

<table>
<thead>
<tr>
<th>init Q</th>
<th>m</th>
<th>σ²</th>
<th>r</th>
<th>y_{n+1}</th>
<th>σ₀²</th>
</tr>
</thead>
</table>

MCMC data set

Some Markov chains are nice: they have predictable limiting behavior.
where initialization fails

\[\mu \]

\[\mathcal{B} \]

\[\text{iter } \# (v) \]

huge variance \(\Rightarrow \) tiny precision

\[p(\mu | \mathcal{B}) \approx 10^{-6} \]

\[\Sigma(\epsilon,t) \]

\[p(\mathcal{B} | \epsilon) \]

\[\mu \]

\[\mathcal{B} \]

\[0 \]

\[2 \]

\[1 \]

\[6 \]

\[10 \]

\[50 \]