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AMS 132: Discussion Section 1 (with correction in part (f))

1. Consider a random variable Y that represents your uncertainty about a waiting time: a measure-
ment of how long you’ll have to wait (starting at time 0) until something interesting happens (e.g.,
until a particular Amazon customer makes a new purchase, or until a particular type of decay of
a radioactive atom occurs, or ...). Under assumptions that reasonably describe some (but not all)
real-world waiting-time phenomena (see the AMS 131 and 132 textbook DeGroot and Schervish
(2012), pages 321–325, for details), Y can be modeled as a draw from the exponential distribution:
for any β > 0, the probability density function (PDF, or just density, or sometimes just distribution
for short) for Y is

pY (y | β) , p(y | β) =

{
β e−β y y ≥ 0

0 otherwise

}
= β e−β y I(y ≥ 0) , (1)

in which I(A) is the indicator function, equal to 1 if A is true and 0 otherwise, and , means “is
defined to be” (for simplicity, we’ll often drop the subscript Y in pY (y | β) when this creates no
confusion). Recalling the ideas in AMS 131, you can see that Y is a continuous random variable on
the non-negative part (y ≥ 0) of the real number line and that {p(y | β), β ≥ 0} is actually a family
of densities indexed by the parameter β. We’ll often use the succinct notation

(Y | β) ∼ Exponential(β) (2)

to mean the same thing as equation (1); here, as in AMS 131, ∼ stands for “is distributed as,”
so that equation (2) is read as Y (given β) is Exponentially distributed with parameter β or (even
more succinctly) as Y is Exponential(β).

(a) Sketch the density function for Y with β = 1 and β = 2. What role does β appear to play in
this family of distributions?

(b) It can be shown, by repeated integration by parts, that for any non-negative integer k,

E
(
Y k
)

=

∫ ∞
0

yk
[
β e−β y

]
dy =

k!

βk
(3)

(it might be good for you to work this out with k = 1, just for practice). Use equation (2) to
show that

E(Y ) , θ =
1

β
, V (Y ) , σ2 =

1

β2
and SD(Y ) , σ =

1

β
. (4)

The fact that E(Y ) = 1
β

means that β represents the rate at which the waiting time process

unfolds: since Y is measured in time units (e.g., seconds), the units of β must be 1
time

(e.g.,
2.6 interesting events per second).
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Suppose now that you’re about to collect an IID random sample Y = (Y1, . . . , Yn) of n observations
from this waiting time process (for n a non-negative integer), and let y = (y1, . . . , yn) stand for the
observed data values. Then your model for Y can be written

pYi(yi | β) , p(yi | β) =

{
β e−β yi yi ≥ 0

0 otherwise

}
(for i = 1, . . . , n) , (5)

and this can be summarized even more succinctly as

(Yi | β)
IID∼ Exponential(β) (for i = 1, . . . , n) . (6)

The point of gathering this data set is to use y to draw valid statistical inferences about β. In
the frequentist approach, as usual this requires you to first think probabilistically, temporarily
pretending that β is known and considering the possible data sets Y you could observe. We’ll see
later in the course that a good frequentist estimate for β based on Y is

β̂ =
n

S
= Y

−1
, (7)

in which S =
∑n

i=1 Yi is the sample sum and Y = 1
n

∑n
i=1 Yi is the sample mean.

(c) Recall from AMS 131 that — as long as E(Yi) exists and is finite, which is certainly true here
— the expected value E

(
Y
)

of the sample mean is the same as the expected value E(Yi) of
any single observation Yi going into the calculation of the mean:

E
(
Y
)

= E(Yi) = θ . (8)

Given your result for the expected value of Y in part (b) above, briefly explain why Y
−1

is
an intuitively reasonable estimator of β.

(d) Also recall from AMS 131 that — as long as V (Yi) exists and is finite, which is certainly also
true here — the variance V

(
Y
)

of the sample mean is related to the variance of any single
observation Yi going into the calculation of the mean through the expression

V
(
Y
)

=
V (Yi)

n
=
σ2

n
=

1

β2 n
. (9)

Does this match your intuition that, as the amount of information you have about β — which
is driven by the sample size n — goes up, your uncertainty about β on the basis of Y should
go down?

(e) For large n, what should the repeated-sampling distribution of Y look like? Explain briefly.

(f) The estimator β̂ in (7) is related to Y through the invertible transformation

β̂ = h
(
Y
)

for h(t) =
1

t
. (10)

Use the Delta Method (DeGroot and Schervish (2012), pages 364–365) to show that for large
n,

E
(
β̂
)
.
= β and V

(
β̂
)
.
=
β2

n
. (11)

The approximate expression for the repeated-sampling variance of β̂ in (11) gets larger as β
increases. Does this make good intuitive sense? Explain briefly.
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